

# EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

### **COURSE DESCRIPTION CARD - SYLLABUS**

Course name

Measurement systems programming

**Course** 

Field of study Year/Semester

Mechatronics 1/2

Area of study (specialization) Profile of study

Automation and supervision of systems general academic

Level of study Course offered in

Second-cycle studies Polish

Form of study Requirements

full-time elective

**Number of hours** 

Lecture Laboratory classes Other (e.g. online)

15 15 0

Tutorials Projects/seminars

0 0

**Number of credit points** 

2

Lecturers

Responsible for the course/lecturer:

Responsible for the course/lecturer:

Dawid Kucharski, PhD Eng.

Division of Metrology and Measurement Systems,

Institute of Mechanical Technology,

Faculty of Mechanical Engineering,

Poznan University of Technology,

Jana Pawla II 24 Street,

60-965 Poznan.

Room 129.

tel: +48 61 665 3569

fax: fax. +48 61 665 3595

**Prerequisites** 



#### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic knowledge of: technical metrology, optics, physics, measurement systems, programming, technical drawings and machine parts.

### **Course objective**

Getting to know about novel software for geometrical quantitites metrology applications and possibilities of practical applications.

### **Course-related learning outcomes**

Knowledge

A student can characterise novel software for measurement systems. A student can characterise a field od applications of the novel measurement softwares.

Skills

A student can:

choose the right software for a measurement task;

prepare measurement code;

analise a measurement data;

found error sources and ev. reduce their infuence.

#### Social competences

A student can colaborate in a group. A student knows importance of novel, advanced measurement systems in the modern economy.

### Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Summative assessment:

Lectures: course final exam, written (5 questions)

Laboratory: written/oral answer + lab reports; passing rules: positive assessments for all lab exercises

### **Programme content**

#### Lectures:

- 1. Definition, structure and tasks of advanced, modern measurement systems.
- 2. Advanced measurement systems for geometric quantities metrology.
- 3. Operating systems used for measurement devices control.
- 4. Overview of available programs used in modern measurement systems.
- 5. Common programming languages.



### EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 6. Measurement systems control algorithms and measurement data analysis software.
- 7. Software for optical measurement systems sensors and feedback case.
- 8. Data analysis algorithms, data codes overview.
- 9. Measurements of geometric quantities by using optical measurement systems. Information decoding.
- 10. Data analysis algorithms optimialisation with parallel computing.
- 11. Softwrare standarisation in metrology.

#### Lab courses:

- 1. Programming of the special machine for shape deviation measurements.
- 2. Coordinate measuring machine (CMM) measurements.
- 3. Algorithms for 3D optical scanner data analysis.
- 4. NDT shearography measurements.
- 5. Interferometric surface texture measurements. Control algorithms, data analysis.
- 6. Software for vision measurement systems.

#### **Teaching methods**

Lectures: oral presentation with illustrated examples on a blackboard, discussions and tasks analysis.

Laboratory: practical excercises, team working, tasks solving, discussions

#### **Bibliography**

#### Basic

- 1. Specyfikacje geometrii wyrobów (GPS), Humienny Z. i inni, Wydawnictwa Naukowo-Techniczne, Warszawa, 2004
- 2. Metrologia wielkości geometrycznych, Jakubiec W., Malinowski J., WNT, Warszawa, 2006
- 3. Optical Measurement of Surface Topography, Leach R., Springer Science & Business Media, Berlin, Heidelberg, 2011.

## Additional

- 1. Współczesna metrologia, zagadnienia wybrane, Barzykowski J. i inni, Wydawnictwa Naukowo-Techniczne, Warszawa, 2004
- 2. An introduction to engineering measurements, Graham A. R., Englewood cliffs, Prentice-Hall, 1975
- 3. Chapter 6. Validation of software used in metrology, in: Metrology and Theory of Measurement, Slaev V.A., Chunovkina A.G., Mironovsky L.A., DE GRUYTER, Berlin, Boston.



# EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

4. An introduction to interferometry, Tolansky S., Longmans, Green, 1955.

# Breakdown of average student's workload

|                                                                                  | Hours | ECTS |
|----------------------------------------------------------------------------------|-------|------|
| Total workload                                                                   | 50    | 2,0  |
| Classes requiring direct contact with the teacher                                | 30    | 1,0  |
| Student's own work (literature studies, preparation for laboratory               | 20    | 1,0  |
| classes/tutorials, preparation for tests/exam, project preparation) <sup>1</sup> |       |      |

 $<sup>^{\</sup>mbox{\scriptsize 1}}$  delete or add other activities as appropriate